Явление кавитации и способы борьбы с ней

Кронштейн с резинометаллическим подшипником закрепляют к дейдвуду сбоку на сквозных болтах. Под гайки необходимо проложить металлическую полосу. Предлагаемый способ удобен тем, что не требует сверлить отверстие в дейдвуде, где обычно проходят основные крепежные болты, а также усиливать дейдвуд металлической коробкой или накладками из твердого дерева. Двигатель нужно установить под углом к диаметральной плоскости шлюпки или немного сместить к одному борту на работе винта и управляемости шлюпки это практически не сказывается. Положение гребного вала и ходовой дифферент. Глиссирующие и полуглиссирующие идущие в переходном режиме лодки нередко ходят с большим дифферентом на корму, сильно задирая нос. Потери скорости при этом несомненны. Большое влияние на ходовой дифферент оказывает направление действия упора гребного винта, т. О влиянии вертикальной составляющей упора наклонного гребного винта уже упоминалось. Аналогичный эффект дает изменение угла наклона подвесного мотора на транце лодки. Гребной винт в туннеле. Глубина туннеля подбирается так, чтобы по возможности углубить винт в корпус.

Кавитация гребного винта это

Лучше, если кормовой срез туннеля будет ниже поверхности воды, — тогда на заднем ходу воздух не будет поступать к винту. Лопасти же винта могут выступать над уровнем ватерлинии — на ходу туннель заполняется водой и винт развивает нормальный упор. В поперечных сечениях туннель в месте установки винта должен быть цилиндрическим, ближе к носовому концу — овальным. Кромки туннеля в носовой части желательно скруглить, чтобы исключить образование вихрей, нарушающих равномерную работу винта. А так как упор винта создается в большей степени за счет разрежения на засасывающей стороне лопастей и в меньшей — за счет повышения давления на их нагнетающей стороне, то после возникновения кавитации упор винта уже не растет. Кавитационные полости, называемые также кавернами, образуются прежде всего у входящей кромки лопасти, а потом уже захватывают всю засасывающую сторону. Пока каверны невелики, существенного влияния на работу гребного винта они не оказывают. Его гидродинамические характеристики на этой стадии, которую принято называть первой стадией кавитации, практически еще не изменяются, однако плохо другое: Кавитация возникает не только на гребных винтах, но и на любых профилированных элементах, движущихся под водой с большой скоростью Так, появляясь на рулях и крыльевых системах быстроходных судов, она заметно снижает их эффективность.

При определенных условиях кавитация возникает и в трубопроводах, вызывая характерный шум и эрозионное разрушение внутренней поверхности труб. Кавитация гребных винтов С дальнейшим увеличением частоты вращения винта наступает вторая стадия кавитации: С конца прошлого века явление кавитации постоянно приковывало внимание ученых разных стран. Было проведено немало исследований, выдвинуто множество гипотез. Оказалось, что процесс этот гораздо шире и многообразнее, чем приведенный выше пример. В настоящее время под кавитацией понимают физическое явление, заключающееся в том, что при понижении давления внутри жидкости или на ее границах образуются каверны, т.

Кавитация гребного винта это

Например, появление пузырьков газа при понижении давления в бутылке с минеральной водой сразу после ее откупоривания является кавитацией, которую часто называют газовой. В газированных напитках — это заранее запланированный и полезный процесс, поэтому в этом случае кавитацию можно считать полезной. Но тот же самый по сути процесс становится неуправляемым и смертельно опасным в случае так называемой кессонной болезни, когда после длительного пребывания на большой глубине под значительным давлением водолаз без должных предосторожностей быстро поднимается на поверхность и растворившиеся при повышенном давлении в его крови газы при понижении давления образуют значительные по размеру пузыри, способные помешать нормальному кровообращению.

Явление кавитации и способы борьбы с ней

По сравнению с описанной газовой кавитацией, возникающей при понижении давления в насыщенных или близких к насыщению растворах, значительно большее практическое значение имеет так называемая паровая кавитация, возникающая в потоках жидкости в районе, где давление понижается до соответствующей критической величины. Так как в этом случае обычно содержание растворенных газов в жидкости мало, механизм появления каверн связан не столько с диффузией растворенных газов, сколько с инерционным ростом кавитационных зародышей или ядер кавитации, которые согласно гипотезе Эпштейна-Гарвея обязательно присутствуют в реальной жидкости. Поясним, что здесь имеется в виду. На рисунке изображена диаграмма состояния для обыкновенной воды. Переход из жидкого агрегатного состояния в газообразное может происходить тремя способами. Во-первых, путем нагревания при постоянном давлении линия АВ на рисунке — этот процесс называется кипением. Во-вторых, путем понижения давления при постоянной температуре линия СД на рисунке — этот процесс называется паровой кавитацией или холодным кипением.

Есть, наконец, и третий, более сложный способ, в обход критической точки, не пересекая кривую кипения: Жидкость переходит в газообразное состояние сразу во всем объеме и наличие в ней ядер кавитации на переход не влияет. В случаях же кипения или кавитации, наоборот, роль указанных ядер или зародышей очень велика. Избавление жидкости от примесей, предварительное обжатие ее повышенным давлением и тщательная очистка смачиваемых поверхностей, соприкасающихся с жидкостью, приводит к значительной задержке указанных процессов например, пунктирная линия на рисунке. Так, при специальной обработке воды кавитация не начинается даже при очень больших отрицательных давлениях, равных — атм, что объясняется наличием значительных сил молекулярного взаимодействия. Вообще, как известно, глиссирующие катера с водяным винтом достигли к г.

Явление кавитации и способы борьбы с ней

Как уже отмечалось, огромный вред неуправляемая паровая кавитация, возникающая на гребных винтах быстроходных кораблей и судов, приносит в тех случаях, когда образовавшиеся каверны замыкаются в пределах лопастей и вызывают их эрозионное разрушение. Командование одного из соединений германского флота еще в г. Долгое время механизм кавитационной эрозии был непонятен. Интересный, даже забавный эксперимент для оценки величины местных импульсов давлений, возникающих при замыкании кавитационных паровых пузырьков, провел известный советский ученый Л. Он поместил в зону кавитации свою собственную руку и ощутил множество уколов, напоминающих укол швейной иглой.

После этого без особого труда ему удалось найти силу около 1 Н , с которой надо давить на швейную иглу, чтобы ощущение укола оказалось близким к тому, которое было при кавитации. Таким образом ученому удалось установить, что давление в малой зоне замыкания парового кавитирующего пузырька площадью примерно 0,01 мм2 может достигать атмосфер. Причиной возникновения неуправляемой паровой кавитации в этом случае является сильная окружная неравномерность поля скоростей в районе гребного винта, приводящая к значительным колебаниям углов атаки сечений за один оборот в процессе их движения по окружности. Вибрация корпусных конструкций, вызванная неуправляемой паровой кавитацией, может быть очень значительной. Вот как описали свои ощущения И. Дрожали палубы, стены, иллюминаторы шезлонги, стаканы над умывальником, сам умывальник.

Вибрация парохода была столь сильной, что начали издавать звуки даже такие предметы, от которых никак этого нельзя было ожидать. Впервые в жизни мы слышали, как звучит полотенце, мыло, ковер на полу, бумага на столе, занавески, воротничок, брошенный на кровать. Звучало и гремело все, что находилось в каюте. Достаточно было пассажиру на секунду задуматься и ослабить мускулы лица, как у него начинали стучать зубы. Всю ночь казалось, что кто-то ломится в двери, стучит в окна, тяжко хохочет. Мы насчитали сотню различных звуков, которые издавала наша каюта. Однако такие примеры есть, и сфера их практического применения будет расширяться. Это вредное явление может с успехом использоваться, например, для очистки поверхности корпуса от старой краски, продуктов обрастания и ржавчины как в условиях сухого дока, так и под водой.

Ударяясь перпендикулярно об обрабатываемую поверхность, струя растекается во все стороны. В месте встречи в районе критической точки давление существенно возрастает, происходит интенсивное схлопывание кавитационных пузырьков, что приводит к эрозии, выполняющей работу по очистке поверхности. Интенсивность кавитации подбирается так, чтобы ненужное покрытие разрушалось, а сама поверхность корпуса оставалась неповрежденной. Важный практический эффект при такой очистке заключается еще и в том, что из-за наличия камеры, заполненной водой и окружающей струю, установка при работе сама присасывается к обрабатываемой поверхности и не требует немалых физических сил для ее удержания, как это имеет место в обычных установках гидравлической очистки.

Гребной винт-мультипитч

Другой пример использования управляемой паровой кавитации хотя и не связан с судостроением, но представляет несомненный интерес. Ивченко был проведен такой опыт.

30.10.2019 50